Подготовка к итоговой контрольной работе. 10 класс.

$$57\sqrt{2}\cos 405^{\circ}$$
.

1. Найдите значение выражения
$$57\sqrt{2}\cos 405^\circ$$
.

2. Найдите $\cos \alpha_{\text{:если}}\sin \alpha = 0, 8_{\text{и}}90^\circ < \alpha < 180^\circ$.

 $50\sin 19^\circ \cdot \cos 19^\circ$

3. Найдите значение выражения

$$10\sin 6\alpha$$

$$\frac{10\sin 6\alpha}{10\cos 6\alpha}$$

4. Найдите $3\cos 3\alpha$, если $\sin 3\alpha = 0,6$

$$2\sqrt{2}\sin\frac{13\pi}{8}\cdot\cos\frac{13\pi}{8}$$

Найдите значение выражения

6. Найдите значение выражения $-\frac{17 \text{ tg } 765^{\circ}}{2}$.

$$\cos x = \frac{2\sqrt{6}}{5}$$
 $\cos x = -\frac{2\sqrt{6}}{5}$ $\cos x = \frac{2\sqrt{6}}{4\cos 146^{\circ}}$

7. Найдите sin *x*, если

8. Найдите значение выражения $\cos 34^{\circ}$

$$\frac{6}{r^2 + 2} = 1$$

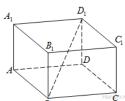
 $\frac{6}{x^2+2}=1$. Если уравнение имеет более одного корня, в ответе запишите больший из корней.

 $\frac{1}{\mathbf{10.}} \, \mathbf{Ha}$ йдите корень уравнения $\frac{1}{3x-4} = \frac{1}{4x-11}$.

$$\frac{1}{3x-4} = \frac{1}{4x-11}.$$

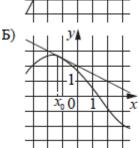
 $\sin\frac{\pi(x+9)}{4} = -\frac{\sqrt{2}}{2}$

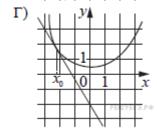
11. Решите уравнение



Найдите площадь поверхности многогранника, изображенного на рисунке (все двугран-12. ные углы прямые).

В ответе напишите наименьший положительный корень.


13. От деревянного кубика отпилили все его вершины (см. рисунок). Сколько вершин у получившегося многогранника (невидимые рёбра на рисунке не изображены)?


прямоугольном параллелепипеде $ABCDA_1B_1C_1D_{1$ известно, что $BD_1 = 5$; $CC_1 = 3$; $B_1C_1 = \sqrt{7}$. Найдите длину ребра AB_1 .

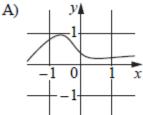
- **15.** Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
- **16.** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ известно, что $AC_1=2BC$. Найдите угол между диагоналями BD_1 и CA_1 . Ответ дайте в градусах.
- **17.** На рисунках изображены графики функций и касательные, проведённые к ним в точках с абсциссой x_0 . Установите соответствие между графиками функций и значениями производной этих функций в точке x_0 .

ГРАФИКИ

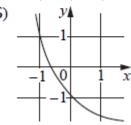
B) 1 x₀ 0 1 x

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ

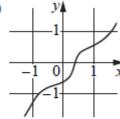
- $-\frac{5}{3}$
- 2. 0,75;
- 3.1;
- 4. -0.5.

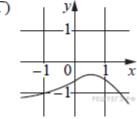

В таблице под каждой буквой укажите соответствующий номер.

A	Б	В	Γ


Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

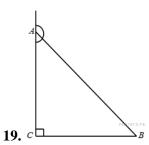
A	Б	В	Γ


18. Установите соответствие между графиками функций и характеристиками этих функций на отрезке [-1; 1].



B)

 Γ



ХАРАКТЕРИСТИКИ

- 1) Функция принимает отрицательное значение в каждой точке отрезка [-1; 1].
- 2) Функция возрастает на отрезке [-1; 1].
- 3) Функция убывает на отрезке [-1; 1].
- 4) Функция принимает положительное значение в каждой точке отрезка [-1; 1].

В таблице под каждой буквой укажите соответствующий номер.

A	Б	В	Γ

В треугольнике ABCугол Cравен 90°, тангенс внешнего угла при вершине Aравен Найдите АВ

20. В треугольнике $ABC_{\text{угол}} C_{\text{равен 90°}} BC = 0,5$, $\sin A = \frac{\sqrt{17}}{17}$. Найдите AC.

 2 ВВ треугольнике $ABC_{\text{угол}}$ $C_{\text{равен}}$ 90°, CH_{-} высота, AC = 7, $tgA = \frac{33}{4\sqrt{33}}$. 21. Найдите АН

22.

Сторона основания правильной шестиугольной пирамиды равна 40, боковое ребро равно 101. Найдите площадь боковой поверхности этой пирамиды.

- **23.** Найдите точку максимума функции $y = x^3 48x + 17$.
- **24.** Найдите точку минимума функции $y = x^3 48x + 17$.
- **25.** Найдите наименьшее значение функции $y = x^3 27x_{\text{на отрезке}}[0;4]$.