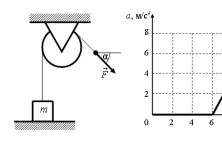
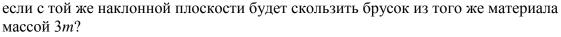
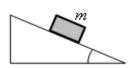

1. Мяч, брошенный вертикально вверх со скоростью υ , через некоторое время упал на поверхность Земли. Какой график соответствует зависимости проекции скорости на ось OX от времени движения? Ось OX направлена вертикально вверх.


- 2. В инерциальной системе отсчёта сила F сообщает телу массой m ускорение а. Ускорение тела массой 2m под действием силы 13F в этой системе отсчёта равно
- **1**) a
- **2)** 16a
- **3**) 23a
- **4)** 32a
- 3. Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?
- **1)** 7*F*
- **2)** 9*F*
- **3**) 12*F*
- **4)** 16*F*
- 4. Мальчик массой 50 кг находится на тележке массой 50 кг, движущейся по гладкой горизонтальной дороге со скоростью 1 м/с. Каким станет модуль скорости тележки, если мальчик прыгнет с неё со скоростью 2 м/с относительно дороги в направлении, противоположном первоначальному направлению движения тележки?
- **1**) 0
- **2)** 1 m/c
- 3) 2 m/c
- **4)** 4 M/c
- 5. Искусственный спутник обращается вокруг Земли по вытянутой эллиптической орбите. Выберите верное утверждение о потенциальной энергии и полной механической энергии спутника.
- 1) Потенциальная и полная механическая энергия спутника достигают максимальных значений в точке максимального удаления от Земли.
- 2) Потенциальная и полная механическая энергия спутника достигают максимальных значений в точке минимального удаления от Земли.
- 3) Потенциальная энергия достигает максимального значения в точке максимального удаления от Земли, полная механическая энергия спутника неизменна.
- **4)** Потенциальная энергия достигает максимального значения в точке минимального удаления от Земли, полная механическая энергия спутника неизменна.

6. При гармонических колебаниях пружинного маятника координата груза $x(t)=A\sin(2\pi t T+\phi 0)$ изменяется с течением времени t, как показано на рисунке. Период T и амплитуда колебаний A равны соответственно




- 1) T = 2 c, A = 6 cm
- **2)** T = 3 c, A = 3 cm
- 3) T = 4 c, A = 3 cm
- **4)** T = 5 c, A = 6 cm

7. Массивный груз, покоящийся на горизонтальной опоре, привязан к лёгкой нерастяжимой верёвке, перекинутой через идеальный блок. К верёвке прикладывают постоянную силу $F \rightarrow$, направленную под углом $\alpha = 45^{\circ}$ к горизонту (см. рисунок). Зависимость модуля ускорения груза от модуля силы $F \rightarrow$ представлена на графике. Чему равна масса груза?

- **1**) 0,42 кг
- **2**) 0,60 кг
- **3)** 0,85 кг
- **4)** 6,0 κΓ
- 8. С вершины наклонной плоскости из состояния покоя скользит с ускорением брусок массой m (см. рисунок). Как изменится время движения, ускорение бруска и сила трения, действующая на брусок,

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2)уменьшится

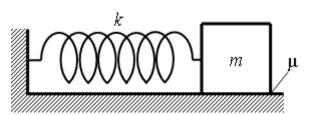
3)не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения	Ускорение	Сила трения		

9. Два пластилиновых шарика массами 2m и m находятся на горизонтальном гладком столе. Первый из них движется ко второму со скоростью $\upsilon \rightarrow$, а второй покоится относительно стола. Укажите формулы, по которым можно рассчитать модули изменения скоростей шариков в результате их абсолютно неупругого удара. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

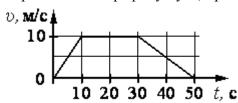

- А) модуль изменения скорости первого шарика
- Б) модуль изменения скорости второго шарика

ФОРМУЛЫ

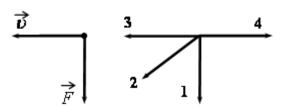
- 1) $|\Delta v \rightarrow |=v$
- 2) $|\Delta v \rightarrow |=23v$
- 3) $|\Delta v \rightarrow |= 2v$
- **4)** $|\Delta v \rightarrow |=13v$

- 10. Мимо остановки по прямой улице с постоянной скоростью проезжает грузовик. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/ c^2 , и догоняет грузовик на расстоянии 150 м от остановки. Чему равна скорость грузовика?
- **1)** 10 m/c
- **2)** 15 m/c
- 3) 20 m/c

- **4)** 30 m/c
- 11. К одному концу лёгкой пружины жёсткостью k = 100 H/м прикреплён массивный груз, лежащий на


горизонтальной плоскости, другой конец пружины закреплён неподвижно (см. рисунок). Коэффициент трения груза по плоскости $\mu=0,2$. Груз смещают по горизонтали, растягивая пружину, затем отпускают с начальной скоростью, равной нулю. Груз движется в одном направлении и затем останавливается в положении, в котором пружина уже сжата.

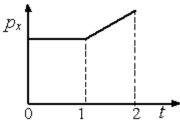
Максимальное растяжение пружины, при котором груз движется таким образом, равно d = 15 см. Найдите массу m груза.


2) 100 м

12. На рисунке представлен график зависимости модуля скорости v автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от 0 до 30 с.

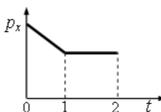
1) 50 м

13. На левом рисунке представлены вектор равнодействующей F всех сил, действующих на тело, и

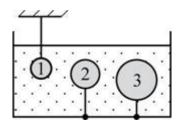

вектор скорости тела υ в инерциальной системе отсчёта. Какой из четырёх векторов на правом рисунке указывает направление вектора ускорения тела в этой системе отсчёта?

3) 250 M

- **1**) 1
- **2**) 2
- **3**) 3
- **4)** 4


4) 200 м

- 14. Расстояние от спутника до центра Земли равно двум радиусам Земли. Во сколько раз изменится сила притяжения спутника к Земле, если расстояние от него до центра Земли увеличится в 2 раза?
- 1) увеличится в 2 раза 2) увеличится в 4 раза 3) уменьшится в 2 раза 4) уменьшится в 4 раза



- 15. На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?
- 1) в интервале 0–1 не двигалось, в интервале 1–2 двигалось равномерно
- **2**) в интервале 0–1 двигалось равномерно, в интервале 1–2 двигалось равноускоренно
- 3) в интервалах 0-1 и 1-2 двигалось равномерно
- 4) в интервалах 0-1 и 1-2 двигалось равноускоренно

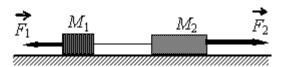

16. На рисунке приведён график зависимости проекции импульса тела на ось *Ox*, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

- 1) в интервале 0–1 равномерно, в интервале 1–2 не двигалось
- 2) в интервале 0–1 равноускоренно, в интервале 1–2 равномерно
- 3) в интервалах 0–1 и 1–2 равномерно
- 4) в интервалах 0-1 и 1-2 равноускоренно
- 17. Если многократно сжимать пружину, то она нагревается. Это можно объяснить тем, что
- 1) потенциальная энергия пружины переходит в кинетическую
- 2) кинетическая энергия пружины переходит в потенциальную
- 3) часть работы внешних сил переходит во внутреннюю энергию пружины
- 4) пружина нагревается в процессе ударов молекул воздуха о частицы вещества пружины
- 18. В воде находятся три шарика одинаковой массы, удерживаемые нитями (см. рисунок). При этом

- 1) на первый шарик действует наибольшая архимедова сила
- 2) на третий шарик действует наибольшая архимедова сила
- 3) архимедова сила, действующая на первый шарик, направлена вниз, а на второй и третий вверх
- 4) на все шарики действуют одинаковые архимедовы силы, так как их массы равны
- 19. Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняется кинетическая энергия груза маятника, модуль скорости груза и жёсткость пружины при движении груза маятника от точки 2 к точке 1?

Для каждой величины определите соответствующий характер её изменения:

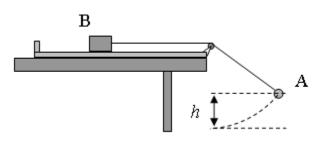
1) увеличивается


2)уменьшается

3)не изменяется

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Кинетическая энергия груза маятника	Модуль скорости груза	Жёсткость пружины


20. Два груза массами соответственно $M_1 = 1$ кг и $M_2 = 2$ кг, лежащие на гладкой горизонтальной

поверхности, связаны невесомой и нерастяжимой нитью. На грузы действуют силы F1 и F2, как показано на рисунке. Сила натяжения нити T=15 H. Каков модуль силы F_1 , если $F_2=21$ H?

- **1**) 6 H
- **2)** 12 H
- **3**) 18 H
- **4)** 21 H

21. В установке, изображённой на рисунке, грузик A соединён перекинутой через блок нитью с бруском B, лежащим на горизонтальной поверхности трибометра, закреплённого на столе. Грузик отводят в сторону, приподнимая его на высоту h, и отпускают. Длина свисающей части нити равна L.

Какую величину должна превзойти масса грузика, чтобы брусок сдвинулся с места в момент прохождения грузиком нижней точки траектории? Масса бруска M, коэффициент трения между бруском и поверхностью μ . Трением в блоке, а также размерами блока пренебречь.

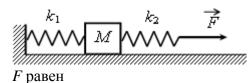
22. Два лыжника движутся по прямой лыжне: один со скоростью υ, другой со скоростью –0,5 υ относительно деревьев. Скорость второго лыжника относительно первого равна

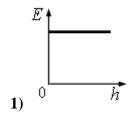
- **1**) 0,5 υ
- **2**) -0.5 v
- 3) -1.5 v
- **4)** 1,5 υ

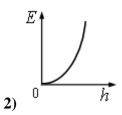
23. Материальная точка движется по окружности радиусом R со скоростью v. Как нужно изменить скорость её движения, чтобы при увеличении радиуса окружности в 2 раза центростремительное ускорение точки осталось прежним?

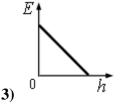
- 1) увеличить в 2 раза
- 2) уменьшить в 2 раза
- 3) увеличить в 2 раза
- 4) уменьшить в 2 раза

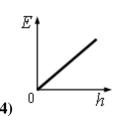
24. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила F (см.



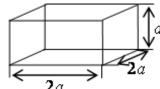

рисунок). Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Жёсткость первой пружины $k_1=300~{\rm H/m}$. Жёсткость второй пружины $k_2=600~{\rm H/m}$. Удлинение второй пружины равно 2 см. Модуль силы


- **1)** 4 H
- **2**) 6 H
- **3)** 12 H
- **4)** 18 H


25. Тело движется по прямой. Начальный импульс тела равен 60 кг·м/с. Под действием постоянной силы величиной 10 H, направленной вдоль этой прямой, за 5 с импульс тела уменьшился и стал равен


- 1) 5 κΓ·м/c
- **2)** 10 κΓ·м/c
- 3) 20 κΓ·м/c
- **4)** 50 κΓ·м/c

26. Какой из графиков, приведённых на рисунке, показывает зависимость полной энергии E тела, брошенного под углом к горизонту, от его высоты h над Землёй? Сопротивлением воздуха пренебречь.



27. Аквариум, изображённый на рисунке, доверху наполнили водой. Найдите силу давления воды на дно аквариума. Плотность воды равна ρ. Атмосферное давление не учитывать.

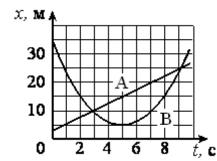
- **1**) pga
- **2**) pga24
- **3**) $4\rho ga^2$
- **4**) $4\rho g a^3$

28. Ученик измерял силу тяжести, действующую на груз. Показания динамометра приведены на фотографии. Погрешность измерения равна цене деления динамометра.

В каком случае показания динамометра записаны верно?

1)
$$(1,6 \pm 0,1)$$
 H

2)
$$(1.4 \pm 0.2)$$
 H


3)
$$(1.6 \pm 0.2)$$
 H

4)
$$(2,4 \pm 0,1)$$
 H

ტ 🧃

29. На рисунке приведены графики зависимости координаты от времени для двух тел: А и В,

движущихся по прямой, вдоль которой и направлена ось Ox. Выберите верное(-ые) утверждение(-я) о характере движения тел.

- А. Временной интервал между встречами тел А и В составляет 6 с.
- **Б.** Тело А движется со скоростью 3 м/с.
- **1**) только A

А, ни Б

- **2**) только Б
- 3) и А, и Б
- **4)** ни
- 30. Массивный груз, подвешенный к потолку на пружине, совершает вертикальные свободные колебания. Пружина всё время остаётся растянутой. Как ведёт себя потенциальная энергия пружины, кинетическая энергия груза, его потенциальная энергия в поле тяжести, когда груз движется вниз от положения равновесия?

Для каждой величины определите соответствующий характер изменения:

1)увеличивается

2)уменьшается

3)не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Потенциальная энергия	Кинетическая энергия груза	Потенциальная энергия груза в
пружины		поле тяжести

31. Тело, брошенное со скоростью υ под углом α к горизонту, в течение времени t поднимается на максимальную высоту h над горизонтом. Сопротивление воздуха пренебрежимо мало́.

Установите соответствие между физическими величинами и формулами, по которым их можно определить.

K каждой позиции первого столбца подберите соответствующую позицию второго и запишите $\underline{\mathbf{B}}$ таблицу выбранные цифры.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

A) время подъёма t на максимальную высоту

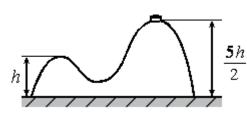
1) $v2\sin 2\alpha 2g$

Б) максимальная высота h над горизонтом

2) υcos2αg3) υ2sin2α2g

4) υsinαg

32. Снаряд массой 2 кг, летящий со скоростью 100 м/c, разрывается на два осколка. Один из осколков летит под углом 90° к первоначальному направлению. Под каким углом к этому направлению полетит второй осколок, если его масса 1 кг, а скорость 400 м/c?


1) 15°

2) 30°

3) 45°

4) 60°

33. На гладкой горизонтальной поверхности стола покоится горка с двумя вершинами, высоты

которых h и 52 h (см. рисунок). На правой вершине горки находится шайба. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Скорость шайбы на левой вершине горки оказалась равной υ . Найдите отношение масс шайбы и горки.

34. Два автомобиля движутся по прямому шоссе: первый – со скоростью υ, второй – со скоростью –4 υ. Скорость второго автомобиля относительно первого равна

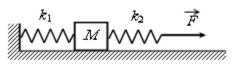
1) -5 v

2) -3 v

3) 3 v

4) 5 υ

35. Точка движется по окружности радиусом R с частотой обращения v. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?


1) увеличить в 2 раза

2) уменьшить в 2 раза

3) увеличить в 4 раза

4) уменьшить в 4 раза

36. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила

величиной F=9 H (см. рисунок). Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Жёсткость первой пружины $k_1=300$ H/м. Жёсткость второй пружины $k_2=600$ H/м. Удлинение второй пружины равно

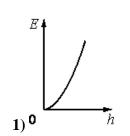
1) 1 cm

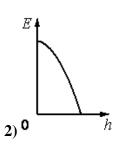
2) 1,5 cm

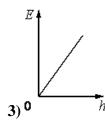
3) 3 cm

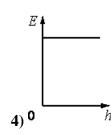
4) 4,5 cm

37. Тело движется по прямой под действием постоянной силы, равной по модулю 10 H и направленной вдоль этой прямой. Сколько времени потребуется для того, чтобы под действием этой силы импульс тела изменился на 50 кг·м/с?

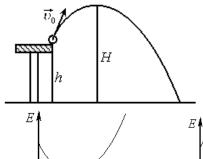

1) 0,5 c

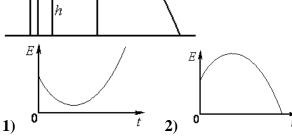

2) 5 c

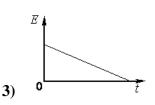

3) 60 c

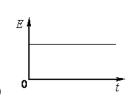

4) 500 c

Какой из графиков изображает зависимость полной механической энергии Е свободно падающего тела от его высоты h над Землёй? Сопротивлением воздуха пренебречь.

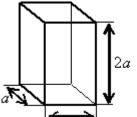


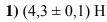






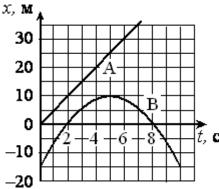
Груз брошен под углом к горизонту (см. рисунок). Какой график изображает зависимость полной механической энергии Е груза от времени? Сопротивлением воздуха пренебречь.





Сосуд, изображённый на рисунке, доверху наполнили некоторой жидкостью. Найдите давление жидкости на дно сосуда. Атмосферное давление не учитывать. Плотность жидкости равна р.

- **1**) pga
- **2**) 2pga
- **3**) $2\rho g a^2$
- **4**) $2\rho ga^3$
- 41. Ученик измерял силу тяжести, действующую на груз. Показания динамометра приведены на фотографии. Погрешность измерения равна цене деления динамометра. В каком случае показания динамометра записаны верно?


2)
$$(4,3 \pm 0,2)$$
 H

3)
$$(4,3 \pm 0,3)$$
 H

4)
$$(4,6 \pm 0,1)$$
 H

42. На рисунке приведены графики зависимости координаты от времени для двух тел: А и В, движущихся по прямой, вдоль которой и направлена ось *Ox*. Выберите верное(-ые) утверждение(-я) о характере движения тел.

- **А.** Интервал между моментами прохождения телом В начала координат составляет 6 с.
- **Б.** В тот момент, когда тело В остановилось, расстояние от него до тела A составляло 15 м.
- 1) только А А, ни Б
- **2**) только Б
- 3) и А, и Б
- **4)** ни
- 43. Массивный груз, подвешенный к потолку на пружине, совершает вертикальные свободные колебания. Пружина всё время остаётся растянутой. Как ведёт себя потенциальная энергия пружины, кинетическая энергия груза, его потенциальная энергия в поле тяжести, когда груз движется вверх от положения равновесия?

Для каждой величины определите соответствующий характер изменения:

1) увеличивается

2)уменьшается

3)не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Потенциальная энергия	Кинетическая энергия груза	Потенциальная энергия груза
пружины		в поле тяжести

44. Тело, брошенное со скоростью υ под углом α к горизонту, поднимается над горизонтом на максимальную высоту h, а затем падает на расстоянии S от точки броска. Сопротивление воздуха пренебрежимо мало́.

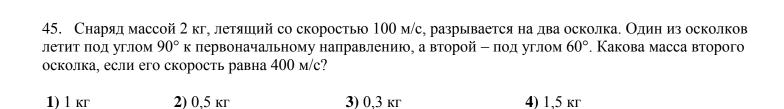
Установите соответствие между физическими величинами и формулами, выражающими их рассматриваемой задаче.

K каждой позиции первого столбца подберите соответствующую позицию второго и запишите $\underline{\mathbf{B}}$ таблицу выбранные цифры.

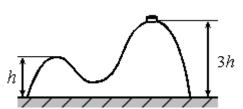
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

A) максимальная высота h над горизонтом

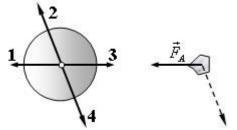

1) $v2\sin 2\alpha 2g$

Б) расстояние S от точки броска до точки падения

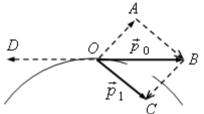

2) υ2cos2αg

3) $v2\sin 2\alpha g$

4) $v2\sin\alpha g$

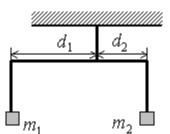


поверхности стола (см. рисунок). На правой вершине горки находится шайба, масса которой в 12 раз меньше массы горки. От незначительного толчка шайба и горка приходят в движение, причём шайба движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. Найдите скорость горки в тот момент, когда шайба окажется на левой вершине горки.


- 47. Автомобиль трогается с места и движется с постоянным ускорением 5 м/c^2 . Какой путь прошёл автомобиль, если его скорость в конце пути оказалась равной 15 м/с?
- **1**) 10,5 M
- **2**) 22,5 M
- **3**) 33 M

- **4)** 45 M
- Мимо Земли летит астероид в направлении, показанном на рисунке пунктирной стрелкой. Вектор 48.

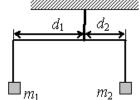
F→А показывает силу притяжения астероида Землёй. Вдоль какой стрелки (1, 2, 3 или 4) направлена сила, действующая на Землю со стороны астероида?


- **1**) вдоль стрелки 1
- 2) вдоль стрелки 2
- 3) вдоль стрелки 3
- 4) вдоль стрелки 4
- 49. Деревянный брусок массой m, площади граней которого связаны отношением $S_1: S_2: S_3 = 1: 2: 3$, скользит равномерно и прямолинейно под действием горизонтальной силы Г→по горизонтальной шероховатой опоре, соприкасаясь с ней гранью площадью S_3 . Каков коэффициент трения бруска об опору?
- **1**) 6Fmg
- **2**) 3Fmg
- **3**) Fmg
- **4)** 2Fmg
- 50. Снаряд, имеющий в точке O траектории импульс p_0 , разорвался на два осколка. Один из осколков имеет импульс р₁. Импульс второго осколка изображается вектором

1) OA

- **2)** AB
- **3**) BC
- 4) OD
- 51. Самосвал массой m_0 при движении на пути к карьеру имеет кинетическую энергию $2.5 \cdot 10^5$ Дж. Какова его кинетическая энергия после загрузки, если он двигался с прежней скоростью, а масса его увеличилась в 2 раза?
- **1**) 5·10⁵ Дж
- **2)** $10^6 \, \text{Дж}$ **3)** $2.5 \cdot 10^5 \, \text{Дж}$
- **4**) 1.25·10⁵ Дж

52. Коромысло весов, к которому подвешены на нитях два тела (см. рисунок), находится в



равновесии. Массу первого тела уменьшили в 2 раза. Как нужно изменить плечо d_2 , чтобы равновесие сохранилось? (Коромысло и нити считать невесомыми.)

- **1**) увеличить в 2 раза
 - 2) увеличить в 4 раза
- 3) уменьшить в 4 раза
- 4) уменьшить в 2 раза

 d_1 , чтобы равновесие сохранилось? (Коромысло и нити считать невесомыми.)

53. Коромысло весов, к которому подвешены на нитях два груза (см. рисунок), находится в равновесии. Массу первого груза увеличили в 2 раза. Как нужно изменить плечо

- 1) уменьшить в 4 раза
- 2) увеличить в 4 раза
- 3) уменьшить в 2 раза
- 4) увеличить в 2 раза

54. В результате торможения в верхних слоях атмосферы высота полёта искусственного спутника над Землёй уменьшилась с 400 до 300 км. Как изменились в результате этого скорость спутника, его кинетическая энергия и период обращения?

Для каждой величины определите соответствующий характер изменения:

1)увеличилась

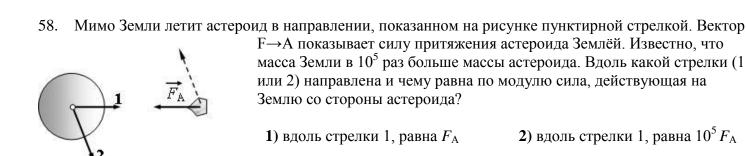
2)уменьшилась

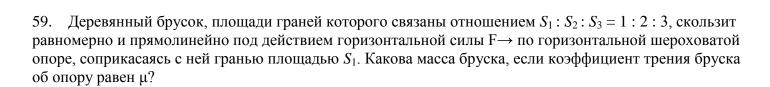
3)не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость	Кинетическая энергия	Период обращения		

55. Невесомая недеформированная пружина лежит на горизонтальном столе. Один её конец закреплен, а другой касается бруска массой M=0,1 кг, находящегося на том же столе. Брусок сдвигают вдоль оси пружины, сжимая пружину на $\Delta x=1$ см, и отпускают. При последующем движении брусок приобретает максимальную скорость, равную 1 м/с. Определите жёсткость пружины. Трение не учитывать.

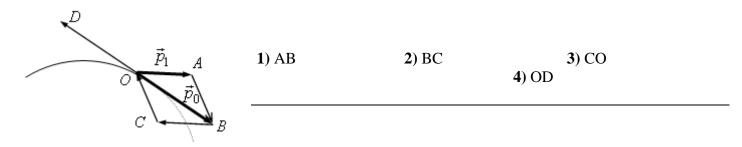

- **1)** 100 H/M
- **2)** 500 H/M
- **3)** 1000 H/M


4) 1500 H/M

56. Снаряд, движущийся со скоростью $\upsilon 0$, разрывается на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая — в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Скорость осколка, движущегося вперёд по направлению движения снаряда, равна $\upsilon 1$. Найдите массу m осколка.

57. Мальчик съезжает на санках равноускоренно со снежной горки. Скорость санок в конце спуска 10 м/c. Ускорение равно 1 м/c^2 , начальная скорость равна нулю. Длина горки равна

- **1)** 25 м
- **2)** 50 M
- **3**) 75 M
- **4)** 100 м



3) вдоль стрелки 2, равна $10^{-5} F_{\rm A}$ **4**) вдоль стрелки 2, равна $F_{\rm A}$

1) F6μg 2) 6Fμg 3) F3μg 4) Fμg

60. Снаряд, имеющий в точке O траектории импульс $p \rightarrow 0$, разорвался на два осколка. Один из осколков имеет импульс $p \rightarrow 1$. Импульс второго осколка изображается вектором

61. Скорость груза массой 0,2 кг равна 1 м/с. Кинетическая энергия груза равна

1) 0,1 Дж 2) 0,2 Дж 3) 0,3 Дж 4) 0,5 Дж

62. Скорость груза массой 0,4 кг равна 2 м/с. Кинетическая энергия груза равна

1) 0,16 Дж **2**) 0,8 Дж **3**) 0,32 Дж **4**) 0,4 Дж

- 63. Коромысло весов, к которому подвешены на нитях два тела (см. рисунок), находится в равновесии. Как нужно изменить плечо d_1 , чтобы после увеличения массы первого тела в 3 раза равновесие сохранилось? (Коромысло и нити считать невесомыми.)
- невесомыми.)

 1) увеличить в 3 раза
 3) уменьшить в 3 раза
 4) уменьшить в 6 раз m_1
- 64. В результате торможения в верхних слоях атмосферы высота полёта искусственного спутника над Землёй уменьшилась с 400 до 300 км. Как изменились в результате этого скорость спутника, его центростремительное ускорение и период обращения?

Лτ	ія кажлой	вепичины	опрелепите	соответству	лоший ха	nakter	изменения:
	и камдон	DCMM IMITU	опродолите	COOLDCICID	утощии ле	ipanic	, momentum.

1)увеличилась

2)уменьшилась

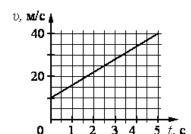
3)не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость	Ускорение	Период обращения		

65. Горизонтально расположенная невесомая пружина с жёсткостью k = 1000 H/m находится в недеформированном состоянии. Один её конец закреплён, а другой касается бруска массой M = 0.1 кг, находящегося на горизонтальной поверхности. Брусок сдвигают, сжимая пружину, и отпускают. На какую длину Δx была сжата пружина, если после отпускания бруска его скорость достигла величины $\upsilon = 1$ м/с? Трение не учитывать.

1) 1 cm


2) 2 cm

3) 3 cm

4) 4 cm

Снаряд массой 2m разрывается в полёте на две равные части, одна из которых продолжает движение по направлению движения снаряда, а другая – в противоположную сторону. В момент разрыва суммарная кинетическая энергия осколков увеличивается за счёт энергии взрыва на величину ΔE . Модуль скорости осколка, движущегося по направлению движения снаряда, равен v1, а модуль скорости второго осколка равен $\upsilon 2$. Найдите ΔE .

67. На графике приведена зависимость скорости тела от времени при прямолинейном движении. Определите ускорение тела.

1) 1 m/c^2

2) 3 m/c^2 3) 4 m/c^2

4) 6 m/c^2

68. Автомобиль массой 10^3 кг движется с постоянной по модулю скоростью по выпуклому мосту. Автомобиль действует на мост в верхней его точке с силой F = 9000 H. Сила, с которой мост действует на автомобиль, равна

1) 9000 Н и направлена вертикально вниз

2) 9000 Н и направлена вертикально вверх

3) 19 000 Н и направлена вертикально вниз

4) 1000 Н и направлена вертикально вверх

69. Мяч массой 300 г брошен под углом 60° к горизонту с начальной скоростью v = 20 м/с. Модуль силы тяжести, действующей на мяч в верхней точке траектории, равен

1) 6,0 H

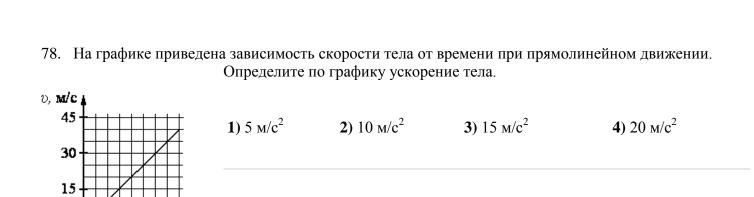
2) 1.5 H

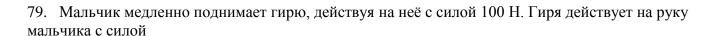
3) 3,0 H

70. Легковой автомобиль и грузовик движутся со скоростями $v_1 = 108$ км/ч и $v_2 = 54$ км/ч соответственно. Их массы соответственно $m_1 = 1000$ кг и $m_2 = 3000$ кг. На сколько импульс грузовика больше импульса легкового автомобиля?

1) на 45 000 кг×м/с

2) на 15 000 кг×м/с


3) на 30 000 кг×м/с


4) на 60 000 кг×м/с

71. Тело массой 1 кг, брошенное вертикально вверх с поверхности Земли, достигло максимальной высоты 20 м. Какой кинетической энергией обладало тело тотчас после броска? Сопротивлением воздуха пренебречь.						
1) 100 Дж	2) 200 Дж	3) 400 ,	Дж 4) 2 кДж		
	72. Тело, брошенное вертикально вверх с поверхности Земли, достигло максимальной высоты 5 м. С какой начальной скоростью тело было брошено вверх? Сопротивлением воздуха пренебречь.					
1) 5 m/c	2) 10 m/c	3) 20 1	м/с	4) 40 m/c		
73. Математиче	равновесия и от какое время пос достигнет макс	гпустили с начасле этого потенимума? Сопрос	альной скоростью, р щиальная энергия м гивлением воздуха г			
QQ	1) T	2) 14 <i>T</i>	3) 12 <i>T</i>	4) 18 <i>T</i>		
	чальная скорость		-	ил камешек в горизонтальном ерез 2 с после броска импульс		
1) 2,1 кг·м/с	2) 1,4 K	г·м/с	3) 0,7 кг·м/с	4) 0		
75. Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняется кинетическая энергия груза маятника, потенциальная энергия и жёсткость пружины при движении груза маятник от точки 2 к точке 1? Для каждой величины определите соответствующий характер изменения:						
	1)увели	чивается	2)уменьшается	3)не изменяется		
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.						
Кинетическая эн	ергия груза	Потенци	альная энергия	Жёсткость пружины		
маятника		пружи	ны маятника			
остановки вдогон		езжает мотоци	клист, движущийся	стью 10 м/с. Через 5 с от с ускорением 3 м/с ² . Чему равна		
1) 20 m/c	2) 30 м/с	3)	40 м/с	4) 50 m/c		

Прибор наблюдения обнаружил летящий снаряд и зафиксировал его горизонтальную координату Прибор

 x_1 и высоту $h_1 = 1655$ м над Землёй (см. рисунок). Через 3 с снаряд упал на Землю и взорвался на расстоянии $l=1700\ \mathrm{M}$ от наблюдення места его обнаружения. Чему равнялось время полёта снаряда от пушки до места взрыва, если считать, что сопротивление воздуха пренебрежимо мало? Пушка и место взрыва находятся на одной горизонтали.

- 1) больше 100 Н, направленной вниз
- 2) меньше 100 Н, направленной вниз

3) 100 Н, направленной вниз

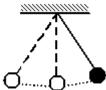
4) 100 Н, направленной вверх

80. Камень массой 0,2 кг брошен под углом 60° к горизонту. Модуль силы тяжести, действующей на камень в момент броска, равен

- **1**) 1 H
- **2)** 2 H
- **3**) 1,73 H

4) 0

81. Легковой автомобиль и грузовик движутся со скоростями $v_1 = 108$ км/ч и $v_2 = 54$ км/ч соответственно. Масса грузовика m = 3000 кг. Какова масса легкового автомобиля, если импульс грузовика больше импульса легкового автомобиля на $15\,000$ кг·м/с?


- **1**) 800 кг
- **2**) 1200 кг

- **3**) 1500 кг
- **4**) 1000 κΓ

82. Тело, брошенное вертикально вверх от поверхности Земли, достигло максимальной высоты 20 м. С какой начальной скоростью тело было брошено вверх? Сопротивлением воздуха пренебречь.

- 1) 4.5 m/c
- **2)** 10 m/c
- 3) 20 m/c
- **4)** 40 m/c

83. Математический маятник с периодом колебаний *T* отклонили на небольшой угол от положения равновесия и отпустили без начальной скорости (см. рисунок). Через какое время после этого кинетическая энергия маятника в первый раз достигнет минимума? Сопротивлением воздуха пренебречь.

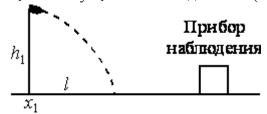
- **1**) 14 *T*
- **2)** 18 *T*
- **3**) 12 *T*
- **4**) 116 *T*

84. Дом стоит на краю поля. С балкона с высоты 5 м мальчик бросил камешек в горизонтальном направлении. Начальная скорость камешка 7 м/с, его масса 0,1 кг. Через 2 с после броска кинетическая энергия камешка приблизительно равна

- **1**) 22,5 Дж
- **2**) 15,3 Дж
- 3) 7,4 Дж
- **4)** 0

85. Груз изображённого на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Как меняется потенциальная энергия пружины маятника, кинетическая энергия груза и жёсткость пружины при движении груза маятника от точки 1 к точке 2? Для каждой величины определите соответствующий характер её изменения:

1) увеличивается


2) уменьшается

3)не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Потенциальная энергия пружины маятника	Кинетическая энергия груза	Жёсткость пружины

- 86. Мимо остановки по прямой улице проезжает грузовик со скоростью 10 м/с. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с постоянным ускорением, и догоняет грузовик на расстоянии 150 м от остановки. Чему равно ускорение мотоцикла?
- 1) 4 m/c^2
- **2)** 3 m/c^2
- 3) 2 m/c^2
- **4)** 1 m/c^2
- 87. Прибор наблюдения обнаружил летящий снаряд и зафиксировал его горизонтальную координату x_1 и высоту $h_1 = 1655$ м над Землёй (см. рисунок). Через 3 с снаряд упал на Землю и взорвался на

расстоянии l=1700 м от места его обнаружения. Известно, что снаряды данного типа вылетают из ствола пушки со скоростью 800 м/с. На каком расстоянии от точки взрыва снаряда находилась пушка, если считать, что сопротивление воздуха пренебрежимо мало́? Пушка и место взрыва находятся на одной горизонтали.